Photoelectron spectroscopy of CdSe nanocrystals in the gas phase: a direct measure of the evanescent electron wave function of quantum dots.
نویسندگان
چکیده
We present the first photoelectron spectroscopy measurements of quantum dots (semiconductor nanocrystals) in the gas phase. By coupling a nanoparticle aerosol source to a femtosecond velocity map imaging photoelectron spectrometer, we apply robust gas-phase photoelectron spectroscopy techniques to colloidal quantum dots, which typically must be studied in a liquid solvent or while bound to a surface. Working with a flowing aerosol of quantum dots offers the additional advantages of providing fresh nanoparticles for each laser shot and removing perturbations from bonding with a surface or interactions with the solvent. In this work, we perform a two-photon photoionization experiment to show that the photoelectron yield per exciton depends on the physical size of the quantum dot, increasing for smaller dots. Next, using effective mass modeling we show that the extent to which the electron wave function of the exciton extends from the quantum dot, the so-called "evanescent electron wavefunction", increases as the size of the quantum dot decreases. We show that the photoelectron yield is dominated by the evanescent electron density due to quantum confinement effects, the difference in the density of states inside and outside of the quantum dots, and the angle-dependent transmission probability of electrons through the surface of the quantum dot. Therefore, the photoelectron yield directly reflects the fraction of evanescent electron wave function that extends outside of the quantum dot. This work shows that gas-phase photoelectron spectroscopy is a robust and general probe of the electronic structure of quantum dots, enabling the first direct measurements of the evanescent exciton wave function.
منابع مشابه
A Thin Layer Imaging with the Total Internal Reflection Fluorescence Microscopy
Total internal reflection fluorescence microscopy (TIRFM) is an optical technique that allows imaging of a thin layer of the sample with a thickness of about 100-200 nm. It is used in science of cell biology to study cellular processes, especially near the membranes of living cells. This method is based on the total internal reflection phenomenon, where the evanescent wave is generated in the l...
متن کاملCharacteristics and Properties of Cdse Quantum Dots
The CdSe nanocrystals (NCs) have been synthesized by hot-injection method to improve the crystallinity of synthesized nanoparticles and reconstruct the surface of nanoparticles. The crystalline structure and optical properties of these NCs are characterized by X-ray powder diffraction (XRD), ultravioletvisible light absorption and photoluminescence (PL) spectroscopy. The CdSe NC grains are rou...
متن کاملOne-pot synthesis and characterization of high-quality CdSe/ZnX (X=S, Se) nanocrystals via the CdO precursor
We report on the synthesis of CdSe/ZnX (X=S, Se) core/shell quantum dots from the CdO precursor through a convenient, one-pot approach. The defocusing stage (i.e., Ostwald Ripening) can be finely controlled to prepare nearly monodispersive core/shell quantum dots. The resulting particles have been characterized by their corresponding optical properties, energy dispersive spectroscopy, X-ray pho...
متن کاملInvestigation of the Third-Order Nonlinear Optical Susceptibilities and Nonlinear Refractive Index In Pbs/Cdse/Cds Spherical Quantum Dot
In this study the third order nonlinear susceptibilities are theoreticallycalculated for an electron confined in an isolated PbS/ CdSe/ CdS spherical core-shellshellquantum dots. Our calculation is associated with intersubband transitions in theconduction band. We used the effective mass approximation in this study which is asimple and straightforward study of the third-order optical nonlineari...
متن کاملEffects of bifunctional linker on the optical properties of ZnO nanocolumn-linker-CdSe quantum dots heterostructure.
We study the effects of bifunctional linker on the optical properties of ZnO nanocolumn-linker-CdSe quantum dots heterostructure. The CdSe quantum dots are anchored on the surface of ZnO nanocolumns through either aliphatic linker of 3-aminopropyl trimethoxysilane (APS) or aromatic linker of p-aminophenyl trimethoxysilane (APhS). X-ray photoelectron spectroscopy is used to confirm the bifunctio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 13 6 شماره
صفحات -
تاریخ انتشار 2013